Skip to main content

C++ Day 39

  C++ Day 39 STL Containers (Deep Understanding & Real Usage) Till now, you already know arrays, vectors, loops, and STL algorithms. Today, we go one step deeper and understand STL containers , which are the backbone of modern C++ programming. In real projects and competitive coding, choice of container matters a lot. 1. What are STL Containers? STL containers are data structures provided by C++ to store data efficiently. They handle: memory management resizing element access performance optimization You focus on logic , not memory handling. 2. Categories of STL Containers STL containers are mainly divided into: Sequence Containers Associative Containers Unordered Containers Container Adapters 3. Sequence Containers These store data in sequence . 3.1 Vector Most used container in C++. vector< int > v; Key Features: Dynamic size Contiguous memory Fast random access Slower insertion in middle Example: v. push_...

C++ Day 4

 Great progress! Let’s jump into Day 4 of C++ learning. Today, you'll explore arrays, strings, and basic loops with data structures.


C++ Day 4: Arrays and Strings

🔹 1. Arrays

An array is a collection of elements of the same data type, stored in contiguous memory locations.

✅ Declaration:

int numbers[5];         // uninitialized
int scores[5] = {10, 20, 30, 40, 50};  // initialized

✅ Accessing Elements:

std::cout << scores[2];  // Output: 30

✅ Looping Through an Array:

for (int i = 0; i < 5; i++) {
    std::cout << scores[i] << " ";
}

🔹 2. Multidimensional Arrays

✅ Example: 2D Array (Matrix)

int matrix[2][3] = {
    {1, 2, 3},
    {4, 5, 6}
};

✅ Accessing:

std::cout << matrix[1][2]; // Output: 6

🔹 3. Strings in C++

C++ offers two ways to handle strings:

✅ C-style strings (char arrays)

char name[] = "Alice";
std::cout << name;

✅ C++ string class (recommended)

#include <string>

std::string name = "Alice";
std::cout << name;

✅ String Operations:

std::string s1 = "Hello";
std::string s2 = "World";
std::string result = s1 + " " + s2;
std::cout << result; // Output: Hello World

✅ Useful Functions:

s.length();      // returns length
s.substr(0, 3);  // returns substring
s.find("lo");    // returns index of first match
s.append("!");   // appends to the end

🔹 4. Common Array/String Problems

  • Find the maximum or minimum in an array

  • Calculate sum/average

  • Reverse a string or array

  • Count vowels/consonants in a string

  • Sort an array (will cover later in depth)


✅ Summary for Day 4:

  • You learned how to declare, initialize, and use arrays.

  • You practiced with both 1D and 2D arrays.

  • You learned the difference between C-style strings and C++ strings, and basic operations.

Comments

Popular posts from this blog

C++ Day 35

  C++ Day 34: Layout Layouts (Part 2) We’ll cover: Constructer Layout Adjuster Layout Decorator Layout practise Task 🔹 1. developer form (creational) used to make compound objects measure away step ✅ employ case: you need to form associate in nursing aim (like amp pizza pie calculator house) with elective parameters example: cpp copy edit class calculator {     train Methodor gpu ram; public:     family developer {         train Methodor gpu ram;     public:         developer setcpu(string c) { Methodor = c; take *this; }         developer setgpu(string g) { gpu = g; take *this; }         developer setram(string r) { run = r; take *this; }         calculator Construct() {             take Calculater(cpu gpu ram);         }     };     Calculater(string snow train m train r) : cpu(c) gp...

C++ Day 33

  C++ Day 33: Smart Pointers & Memory Management 🔹 1. wherefore forward pointers in c++ hand-operated green / cancel is error-prone: memory leaks 🧠 double deletes ❌ dangling pointers 💥 smart pointers care store mechanically exploitation raii (Supply skill is initialization) 🔹 ii. Types of Smart Pointers in C++ ✅ std::unique_ptr Sole ownership of a Supply. Cannot be copied. Automatically deletes the Supply when it goes out of scope. cpp Copy Edit #include  unique_ptr ptr1 = make_unique(10); cout << *ptr1 << endl; // 10 You can transfer ownership: cpp Copy Edit unique_ptr ptr2 = move(ptr1); ✅ std::shared_ptr Shared ownership multiple shared_ptrs can point to the same object. Uses reference counting to track how many owners. cpp Copy Edit shared_ptr p1 = make_shared(100); shared_ptr p2 = p1;  // Reference count = 2 When count goes to 0 memory is released. ✅ std::weak_ptr Non-owning reference to a shared_ptr-managed object. Used to break cyclic references ...

CSES Increasing Subsequence solution

 You are given an array containing  n n n integers. Your task is to determine the longest increasing subsequence in the array, i.e., the longest subsequence where every element is larger than the previous one. A subsequence is a sequence that can be derived from the array by deleting some elements without changing the order of the remaining elements. Input The first line contains an integer n n n : the size of the array. After this there are n n n integers x 1 , x 2 , … , x n x_1,x_2,\ldots,x_n x 1 ​ , x 2 ​ , … , x n ​ : the contents of the array. Output Print the length of the longest increasing subsequence. Constraints 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1 ≤ n ≤ 2 ⋅ 1 0 5 1 ≤ x i ≤ 1 0 9 1 \le x_i \le 10^9 1 ≤ x i ​ ≤ 1 0 9 Example Input: 8 7 3 5 3 6 2 9 8 Output: 4 #include < bits / stdc ++. h > using namespace std ; void solve (){ int n ; cin >> n ; vector <int> arr ( n ); for ( int i = 0 ; i < n ; i ++)...