Skip to main content

C++ Day 39

  C++ Day 39 STL Containers (Deep Understanding & Real Usage) Till now, you already know arrays, vectors, loops, and STL algorithms. Today, we go one step deeper and understand STL containers , which are the backbone of modern C++ programming. In real projects and competitive coding, choice of container matters a lot. 1. What are STL Containers? STL containers are data structures provided by C++ to store data efficiently. They handle: memory management resizing element access performance optimization You focus on logic , not memory handling. 2. Categories of STL Containers STL containers are mainly divided into: Sequence Containers Associative Containers Unordered Containers Container Adapters 3. Sequence Containers These store data in sequence . 3.1 Vector Most used container in C++. vector< int > v; Key Features: Dynamic size Contiguous memory Fast random access Slower insertion in middle Example: v. push_...

The True Meaning of Success


 Title: The Actual Worth of Success
Success means different things to different people. Some see it as the achievement of power and prosperity. Some see it as the realization of personal aspirations, happiness, or ability to better the life of others. Though society sometimes judges success by social acceptance and monetary incentives, real achievement is a really private and complex affair.

Achieving a goal mostly determines success. This definition continues to disregard the character of the pathway beyond the target. Apart from going somewhere, success is defined by the values espoused, the level of effort applied, and the personal development achieved along the way. Someone who triumphs over difficulties and sticks to their beliefs demonstrates as much success as one who achieves riches or notoriety does.

Moreover, one should not judge success only on outside acceptance. Everyone attains success their own way: a student graduates despite learning challenges; an artist keeps devoted to their skill despite a lack of recognition; or a parent raises a loving family. These images show how much honesty, aim, and individual fulfillment define success.

Moreover, becoming successful is a never-ending journey rather than a one-time event. Events modify life; hence what one regards as success at one point could shift over time. Usually matching one's ideals and objectives, these liquidity needs Real success is the ability to be happy, continue to develop, and study despite life's ups and downs.

Success begins with one's own path including integrity, tenacity, and personal development rather than a fixed norm promoted by society. It is discovered in the search of high aspirations and in the bravery to choose one's own path. Let our outlook include a more satisfying and sympathetic vision of life beyond financial success.

Comments

Popular posts from this blog

C++ Day 35

  C++ Day 34: Layout Layouts (Part 2) We’ll cover: Constructer Layout Adjuster Layout Decorator Layout practise Task 🔹 1. developer form (creational) used to make compound objects measure away step ✅ employ case: you need to form associate in nursing aim (like amp pizza pie calculator house) with elective parameters example: cpp copy edit class calculator {     train Methodor gpu ram; public:     family developer {         train Methodor gpu ram;     public:         developer setcpu(string c) { Methodor = c; take *this; }         developer setgpu(string g) { gpu = g; take *this; }         developer setram(string r) { run = r; take *this; }         calculator Construct() {             take Calculater(cpu gpu ram);         }     };     Calculater(string snow train m train r) : cpu(c) gp...

C++ Day 33

  C++ Day 33: Smart Pointers & Memory Management 🔹 1. wherefore forward pointers in c++ hand-operated green / cancel is error-prone: memory leaks 🧠 double deletes ❌ dangling pointers 💥 smart pointers care store mechanically exploitation raii (Supply skill is initialization) 🔹 ii. Types of Smart Pointers in C++ ✅ std::unique_ptr Sole ownership of a Supply. Cannot be copied. Automatically deletes the Supply when it goes out of scope. cpp Copy Edit #include  unique_ptr ptr1 = make_unique(10); cout << *ptr1 << endl; // 10 You can transfer ownership: cpp Copy Edit unique_ptr ptr2 = move(ptr1); ✅ std::shared_ptr Shared ownership multiple shared_ptrs can point to the same object. Uses reference counting to track how many owners. cpp Copy Edit shared_ptr p1 = make_shared(100); shared_ptr p2 = p1;  // Reference count = 2 When count goes to 0 memory is released. ✅ std::weak_ptr Non-owning reference to a shared_ptr-managed object. Used to break cyclic references ...

CSES Increasing Subsequence solution

 You are given an array containing  n n n integers. Your task is to determine the longest increasing subsequence in the array, i.e., the longest subsequence where every element is larger than the previous one. A subsequence is a sequence that can be derived from the array by deleting some elements without changing the order of the remaining elements. Input The first line contains an integer n n n : the size of the array. After this there are n n n integers x 1 , x 2 , … , x n x_1,x_2,\ldots,x_n x 1 ​ , x 2 ​ , … , x n ​ : the contents of the array. Output Print the length of the longest increasing subsequence. Constraints 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1 ≤ n ≤ 2 ⋅ 1 0 5 1 ≤ x i ≤ 1 0 9 1 \le x_i \le 10^9 1 ≤ x i ​ ≤ 1 0 9 Example Input: 8 7 3 5 3 6 2 9 8 Output: 4 #include < bits / stdc ++. h > using namespace std ; void solve (){ int n ; cin >> n ; vector <int> arr ( n ); for ( int i = 0 ; i < n ; i ++)...